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Abstract 

Background and aims: Increasing evidence shows that intracranial carotid artery atherosclerosis may 

develop under the influence of a differential metabolic risk factor profile than atherosclerosis in the 

extracranial part of the carotid artery. To further elucidate these differences, we investigated associations 

of a wide range of circulating metabolites with intracranial and extracranial carotid artery atherosclerosis. 

Methods: From the population-based Rotterdam Study, blood samples from 1,111 participants were used 

to determine a wide range of metabolites by proton nuclear magnetic resonance (NMR). Moreover, these 

participants underwent non-contrast computed tomography of the neck and head to quantify the amount 

of extra- and intracranial carotid artery calcification (ECAC and ICAC), as a proxy of atherosclerosis. We 

assessed associations of the metabolites with ICAC and ECAC and compared the metabolic association 

patterns of the two.  

Results: We found that one standard deviation (SD) increase in concentration of 3-hydroxybutyrate, a 

ketone body, was significantly associated with a 0.11 SD increase in (p=1.8×10-4) ICAC volume. When 

we compared the metabolic association pattern of ICAC with that of ECAC, we observed differences in 

glycolysis-related metabolite measures, lipoprotein subfractions, and amino acids. Interestingly, 

glycoprotein acetyls were associated with calcification in both studied vessel beds. These associations 

were strongest in men.  

Conclusions: We found that higher circulating level of 3-hydroxybutyrate was associated with increase in 

ICAC. Furthermore, we found differences in metabolic association patterns of ICAC and ECAC, 

providing further evidence for location-specific differences in the etiology of atherosclerosis.  

Keywords: metabolomics, atherosclerosis, carotid artery  
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Introduction 

Carotid artery atherosclerosis is established as the single most important cause of stroke worldwide.1-4 

Importantly, increasing evidence suggests that the specific location of carotid atherosclerosis, i.e. 

extracranial versus intracranial, harbors unique, differential information with regard to the risk of 

subsequent stroke.3, 4 In addition, it was also found that the contribution of traditional cardiovascular risk 

factors to intracranial carotid artery atherosclerosis is different from that to extracranial carotid artery 

atherosclerosis.5-7 In particular, diabetes mellitus and insulin resistance, i.e. expressions of disrupted 

glucose and insulin metabolism, seem to play a more prominent role in the development of intracranial 

carotid artery atherosclerosis.6, 8, 9 This apparent location-specific susceptibility to metabolic disturbances 

warrants further in-depth investigation of the metabolic underpinnings of carotid artery atherosclerosis. 

Interestingly, methods to perform such an in-depth investigation of large spectra of active metabolites in 

relation to disease have only recently become available.10, 11 With the use of nuclear magnetic resonance 

(NMR), metabolites can now be inexpensively and reproducibly quantified on a large-scale, which 

enables metabolomics studies in large population-based cohorts. Successful examples include metabolic 

profiling of type 2 diabetes,12, 13 and cardiovascular events.14-17 

Applying a similar approach to carotid artery atherosclerosis may expose important metabolites 

contributing to the disease. To date, several inflammatory markers have been associated with different 

stages and manifestation of carotid artery atherosclerosis, such as interleukin-6 and tumor necrosis factor-

α.18, 19 Ultimately, this knowledge may provide opportunities for the development of specific therapeutic 

and preventive strategies.  

Hence, the aim of this study was to investigate associations of a broad range of metabolites with 

intracranial and extracranial carotid artery calcification (ICAC and ECAC), as a proxy of atherosclerosis, 

and to compare the metabolic association profile of ICAC with that of ECAC.  

 

Materials and methods 
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Study population 

Our study population consisted of participants from the Rotterdam Study, a prospective population-based 

cohort study among individuals aged 45 years and over, who are living in the well-defined Ommoord 

district in Rotterdam, the Netherlands.20 The study started in 1990, with 7,983 participants (first 

Rotterdam Study cohort, RS-I), and was extended in 2000/2001 (RS-II, 3,011 participants) and 2006/2008 

(RS-III, 3,932 participants).20 All participants were invited for extensive re-examinations every 3-4 years. 

At each visit, blood was drawn after overnight fasting. The Rotterdam Study has been approved by the 

Medical Ethics Committee of the Erasmus MC and by the Ministry of Health, Welfare and Sport of the 

Netherlands, implementing the Wet Bevolkingsonderzoek: ERGO (Population Studies Act: Rotterdam 

Study).20 All participants provided written informed consent to participate in the study and to obtain 

information from their treating physicians.  

Population for analysis 

Metabolites were available for two independent datasets of the Rotterdam Study. The first set 

encompassed all individuals from the RS-I cohort that participated in the fourth examination round at the 

study center (N = 2,975). Of these, 730 underwent a computed tomography (CT) scan to visualize 

calcification in the carotid arteries. The second dataset consisted of 768 participants from the RS-I, RS-II 

and RS-III cohorts of whom 381 also underwent a CT scan. This dataset was the subset of samples 

previously included in the Biobank-based Integrative Omics Studies Consortium (BIOS Consortium).20, 21 

The CT scan was performed on average 4 months (interquartile range (IQR) 2-4 months) after metabolite 

measuring for the first Rotterdam Study dataset, and 6 years (IQR 5.9-6.2 years) before metabolite 

measuring for the second Rotterdam Study dataset.  

Metabolite quantification 

The metabolites were quantified from EDTA plasma samples using high-throughput proton Nuclear 

Magnetic Resonance (NMR) metabolomics (Nightingale Health, Helsinki, Finland). This method 
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provides simultaneous quantification of metabolic measures, i.e. routine lipids, lipoprotein subclass 

profiling with lipid concentrations within 14 subclasses, fatty acid composition, and various low-

molecular-weight metabolites including amino acids, ketone bodies and gluconeogenesis-related 

metabolites in molar concentration units. The lipoprotein subclasses include very low-density lipoprotein 

(VLDL), intermediate-density lipoprotein (IDL), low-density lipoprotein (LDL) and high-density 

lipoprotein (HDL). In these subclasses, the concentration is measured as well as the subfraction of lipids, 

triglycerides, cholesterol esters, free cholesterol, and phospholipids. Details of the experimentation and 

applications of this NMR metabolomics platform have been described previously.22, 23 For this study we 

analyzed in total 166 non-derived metabolites that were measured across both cohorts.  

Assessment of atherosclerosis 

A 16-slice (n = 785) or 64-slice (n = 1,739) multidetector CT scanner (Somatom Sensation 16 or 64; 

Siemens, Forchheim, Germany) was used to perform non-enhanced scanning of intracranial and 

extracranial carotid arteries to visualize calcification as a proxy of atherosclerosis. Detailed information 

regarding the protocol and imaging settings is provided elsewhere.4 ICAC was semi-automatically 

quantified from the horizontal segment of the petrous internal carotid artery to the top of the internal 

carotid artery.8 Details of this quantification method were described previously.4 Briefly, regions of 

interest were drawn in the course of the intracranial internal carotid arteries in consecutive CT sections. 

Next, calcification volumes were calculated by multiplying the number of pixels in excess of 130 

Hounsfield units by the pixel size and the increment.8 Calcification volumes in the extracranial internal 

carotid arteries were quantified using dedicated commercially available software (Syngo Calcium 

Scoring; Siemens).4 All calcification volumes are expressed in cubic millimeters.  

Other measurements 

Information on cardiovascular risk factors was obtained by means of interview, physical examination or 

blood sampling. Hypertension was defined as a systolic blood pressure ≥140 mmHg, diastolic blood 
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pressure ≥90 mmHg, or use of medication for the treatment of hypertension.24 Diabetes was defined as 

fasting plasma glucose levels above 7 mmol/L or use of medication indicated for the treatment of 

diabetes.24 Hypercholesterolemia was defined as a total cholesterol ≥6.2 mmol/L or use of lipid-lowering 

medication.24 BMI was calculated as weight in kilograms divided by square of height in meters. A history 

of cardiovascular disease was defined as previous myocardial infarction, percutaneous transluminal 

coronary angioplasty, coronary artery bypass graft or stroke.8, 24  

Statistical analysis 

The distributions of metabolic measures were visually inspected for non-normality and were, if necessary, 

natural logarithmic transformed to obtain approximately normal distributions (Supplementary Table 1). 

The metabolites were scaled to standard deviation (SD) units to enable direct comparisons of effect 

estimates across the different measures. Because ICAC and ECAC volumes were non-normally 

distributed, we used natural logarithmic transformed values. To deal with calcium volumes of zero we 

added 1.0 mm3 to the non-transformed values. Subsequently, we scaled these new values to SD units to 

unify reporting and interpretation of the results. To assess the relation of metabolites with ICAC and 

ECAC per dataset, we performed linear regression analysis while adjusting for age, gender, and lipid-

lowering medication (Model 1). The associations were further adjusted for hypertension, diabetes, 

hypercholesterolemia, smoking, and BMI (Model 2). Finally, we additionally adjusted for history of 

cardiovascular disease (Model 3). The summary statistic results of the two datasets were meta-analyzed 

using inverse variance-weighted fixed-effect meta-analysis. Additionally, all analyses were performed in 

males and females separately. 

As metabolic measures are highly correlated (median absolute correlation coefficient = 0.24, IQR = 0.11-

0.50), we used the method of Li and Ji25 to correct for multiple testing. The method calculates the number 

of independent variables (and thus tests) in correlated measures. The 166 metabolites corresponded to 33 

independent variables. Bonferroni correction was applied for the number of independent variables tested 

(p value threshold for significance: 0.05 / 33 = 1.5 × 10-3). All analyses were performed with R (R Core 
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Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical 

Computing, Vienna, Austria (http://www.R-project.org/)). 

Results 

The characteristics of the study population are shown in Table 1 and the summary statistics of metabolites 

are shown in Supplementary Table 1. Participants from the first dataset of Rotterdam Study (N=730, 

51.2% women, mean age 73.8 ± 5.5 years) were older than participants from the second dataset of 

Rotterdam Study (N=381, 53% women, mean age 64.9 ± 3.2 years), resulting in differences in age-related 

clinical characteristics and average volume of calcifications (Table 1). However, the prevalence of ICAC 

was comparable being 83.0% and 80.6 % in the first and second group respectively. The prevalence of 

ECAC was 79.9% in the first and 65.6% in the second dataset. 

We found a significant association of 3-hydroxybutyrate, a glycolysis-related metabolite, with ICAC (one 

standard deviation (SD) increase in the concentration of 3-hydroxybutyrate was related to a 0.11 SD 

increase in ICAC; p=1.8×10-4, Table 2). The effect estimates were consistent across the two datasets (first 

Rotterdam Study dataset: effect=0.10, p=6.5×10-3; second Rotterdam study dataset; effect: 0.13, 

p=9.06×10-3). Further adjustments for traditional cardiovascular risk factors or history of cardiovascular 

disease did not influence the effect estimate (Table 2). We found no statistically significant association of 

any of the metabolites with ECAC (Supplementary Table 2). 

When comparing the metabolic association pattern between ICAC and ECAC we found specific 

differences (Fig. 1, Supplementary Table 2). Among the glycolysis-related metabolic measures, 3-

hydroxybutyrate which was significantly associated with ICAC, showed nominally significant association 

with ECAC (effect=0.07, p=0.015). Glucose was nominally significant associated with both ICAC 

(effect=0.07, p=0.012), and ECAC (effect=0.06, p=0.026), whereas citrate was nominally associated with 

ECAC (effect=0.062, p=0.032) (Supplementary Table 2). Interestingly, among lipoprotein subfractions, 

only triglycerides in medium-sized LDL were nominally associated with ICAC (effect=0.06, p=0.03, Fig. 

1A, Supplementary Table 2), whereas total and free cholesterol and cholesterol esters in extra-large HDL 
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showed nominally significant association with ECAC (Fig. 1A, Supplementary Table 2). Among the 

amino-acids, isoleucine was nominally associated with ICAC, and histidine was nominally associated 

with ECAC. Glycoprotein acetyls were associated with calcification volume in both studied vessel beds.  

When we stratified the analysis by sex the association of 3-hydroxybutyrate with ICAC was nominally 

significant in both men (effect=0.12, p=2.8×10-3) and women (effect=0.08, p=0.036) (Supplementary 

Fig.1 and 2, Supplementary Table 3 and 4). Interestingly, the association of glycoprotein acetyls with 

ICAC and ECAC was mainly driven by men (Supplementary Fig. 1 and 2). However, after further 

adjustments for traditional cardiovascular risk factors or history of cardiovascular disease, glycoprotein 

acetyls in men were not associated with ICAC and ECAC (p>0.05, Supplementary Table 3). Other 

metabolites that were significantly associated with ECAC in men were: the ratio of 18:2 linoleic acid to 

total fatty acids (effect=-0.17, p=4.6×10-5) and the ratio of omega-6 fatty acids to total fatty acids 

(effect=-0.15, p=3.4×10-4). These associations were not modified by the additional adjustments made in 

model 2 and 3 (Supplementary Table 3). No statistically significant associations were observed of 

metabolites with ECAC in women (Supplementary Table 4). 

Discussion 

In this population-based study, we found that glycolysis-related metabolite measures were associated with 

a larger volume of ICAC. In particular, higher levels of 3-hydroxybutyrate substantially contributed to 

larger ICAC volumes. When comparing the metabolic association profile of ICAC with that of ECAC, we 

found specific differences in glycolysis-related metabolite measures, lipoprotein subfractions, and amino 

acids. 

To our knowledge, this is the first study investigating associations of metabolomics with ICAC and 

ECAC. The most intriguing finding was the association of 3-hydroxybutyrate (also called beta-

hydroxybutyric acid) with ICAC. The ketone 3-hydroxybutyrate is the most abundant of the three known 

ketone bodies (acetoacetate, 3-hydroxybutyrate, and acetone) that is produced by the liver during fasting 

and represents an alternative energy source for the brain.26 In addition, fasting-induced 3-hydroxybutyrate 
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has been found to enhance expression of the glucose transporter Glut1 in brain endothelial cells, which 

plays an important role in glucose transport across the blood-brain barrier.27 In general, ketone bodies are 

considered to exert beneficial effects on brain functioning.28 In this light, our finding that higher 

concentrations of 3-hydroxybutyrate relate to larger volumes of ICAC seems to contrast these beneficial 

effects, especially because ICAC is a risk factor for (subclinical) stroke, cognitive decline, and 

dementia.29, 30 Yet, a potential mechanism underlying this association may be found in the property of 3-

hydroxybutyrate to form polymers known as Poly-(R)-3-hydroxybutyrates (PHB)s. These short-chain 

PHBs reside in the lipid core of lipoprotein(a) (Lp(a)), a lipoprotein with profound atherogenic effects and 

also causally related to coronary heart disease.31-34 Another explanation for the relation of 3-

hydroxybutyrate with ICAC may be impaired glucose tolerance. Impaired glucose tolerance is the (pre-) 

clinical state of diabetes mellitus type 2 (DM2) and is associated with an elevated risk of and a poor 

prognosis after cardiovascular events.35, 36 3-hydroxybutyrate levels were found to be increased in 

individuals with impaired glucose tolerance and in patients with DM2, in whom it predicted worsening of 

hyperglycemia and incident DM2 in the next 5 years.37 These data could hypothetically place 3-

hydroxybutyrate in the pathway that leads from an impaired glucose tolerance to increased ICAC and 

eventually cardiovascular events. Another explanation may be that higher levels of 3-hydroxybutyrate 

compensate for defective transport of 3-hydroxybutyrate across the blood-brain barrier due to intracranial 

arteriosclerosis, i.e. reverse causation. Finally, a partial common genetic background might explain the 

relation between 3-hydroxybutyrate and ICAC.  

We also compared the metabolic association patterns of ICAC with that of ECAC. The association 

between glycoprotein acetyls was observed with both ICAC and ECAC, and glycoprotein acetyls 

associated with calcifications in men. Attenuation of these associations in model 2, suggests that 

glycoprotein acetyls might in part reflect pathology related to cardiovascular risk. Levels of this protein 

are strongly associated with smoking and physical activity and glycoprotein acetyl concentration has been 

shown to be a strong predictor of 10-year mortality.38, 39 The protein is a marker of acute-phase reactions 
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and may be implicated in this way in depression,40 diabetes,41 cardiovascular disease42, and cancer.43 

Furthermore, we observed specific differences that further underline the location-specific properties of 

atherosclerosis.5, 44, 45 In addition to differences in glycolysis-related metabolic measures between ICAC 

and ECAC which are discussed above, another interesting difference we found was that higher 

concentrations of HDL subfractions were associated with lower volumes of ECAC, but not with ICAC.  

The strength of our study includes the large sample with standardized assessments of metabolic measures 

and arterial calcification in intracranial and extracranial carotid artery, enabling comparisons of the 

metabolic association patterns of calcification in these two vessel beds. The metabolomics platform that 

we used contains a large proportion of lipoprotein or other lipid measures which provides an excellent 

opportunity to study atherosclerosis.15, 22, 23, 46 However, it should be acknowledged that many other 

metabolites can be measured using more detailed techniques,47 which may also be of importance to 

atherosclerosis. There are also other limitations of our study that should be noted. First, even though 

calcification is a validated marker of atherosclerosis, non-calcified atherosclerotic disease was not taken 

into account. Especially, these non-calcified components of the atherosclerotic plaque may also be 

influenced by the studied metabolites.48 Another limitation of the current study is that metabolites and CT 

scan measures have not been taken at the same time. However, the results were concordant in the two 

datasets despite the time difference in the metabolites and CT scan measures. Finally, although we 

adjusted our analyses for various known potential confounders, residual confounding by unknown factors 

remains possible. We urge future replication efforts of our findings in independent datasets.  

Conclusions 

We found a prominent association between 3-hydroxybutyrate and the amount of ICAC. Investigation of 

the underlying biological mechanisms for the identified association should be the subject of future 

biological studies. When comparing the metabolic association profile of ICAC with that of ECAC, we 

found specific differences in glycolysis-related metabolite measures, lipoprotein subfractions, and amino 
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acids, further corroborating the evidence for the existence of location-specific differences in the etiology 

of carotid artery atherosclerosis.  
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Table 1. Descriptive characteristic of study population 

 
Rotterdam 

Study dataset 1a 

Rotterdam 

Study dataset 2a 

Number of participants 730 381 

Age at CT scan, years 73.8 ± 5.5 64.9 ± 3.2 

Women 374 (51.2%) 202 (53.0%) 

Diastolic blood pressure, mmHg 79.7 ± 11.4 81.3 ± 10.5 

Systolic blood pressure, mmHg 151.2 ± 21.2 142.3 ± 18.0 

Hypertension 406 (56.2%) 162 (43.7%) 

Glucose, mmol/l 5.8 ± 1.4 5.6 ± 1.2 

Participants at CT with diabetes 105 (14.4%) 29 (7.6%) 

Total cholesterol, mmol/l 5.6 ± 1.0 5.8 ± 1.0 

HDL-Cholesterol, mmol/l 1.4 ± 0.4 1.5 ± 0.4 

Hypercholesterolemia 351 (48.5%) 186 (49.7%) 

Smoking (never/past/current) (%) 206/403/91 (28.2/55.2/12.5) 110/200/59 (28.9/52.5/15.5) 

BMI, kg/m2 27.3 ± 4 27.8 ± 3.8 

Participants at CT with cardiovascular disease 95 (13.1%) 27 (7.1%) 

Participants at CT with coronary heart disease 72 (9.9%) 17 (4.5%) 

Participants at CT with stroke 32 (4.4%) 11 (2.9%) 

ICAC volume, median (IQR), cm3 64.8 (13.0-205.6) 22.1 (3.8-75.4) 

ECAC volume, median (IQR), cm3 48 (3.1-176.7) 10.4 (0-60.4) 

p BMI - body mass index; HDL - high-density lipoprotein; ICAC - intracranial carotid artery 

calcification; ECAC - extracranial carotid artery calcification; IQR - interquartile range. 

a Values are means ± standard deviation for continuous variables and number (percentages) for 

dichotomous variables.  
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Table 2. Association of 3-hydroxybutyrate with ICAC volume.  

Models Effect (±SE)a p N 

Model 1 

Age, sex and, lipid-lowering medication 
0.107 (±0.029) 1.76×10-4 1095 

Model 2 

Model 1 + hypertension, diabetes, hypercholesterolemia, smoking, and BMI 
0.092 (±0.030) 2.10×10-3 1059 

Model 3 

Model 2 + history of cardiovascular disease 
0.092 (±0.030) 2.02×10-3 1054 

a Effect estimates are SD change in ICAC per 1-SD 3-hydroxybutyrate concentration.  
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Figure 1. Metabolic association profiles of ICAC and ECAC.  

The colors represent standardized effect estimates of the metabolites with the calcification volume. The effect estimates of lipoprotein subfractions 

with calcification in all studied vessel beds are shown in (A) grouped by classes of lipoproteins. The effect estimates of other metabolite measures 

are shown in (B) grouped by type of metabolic measure. The effect estimates are adjusted for age, gender, and lipid-lowering medication.  
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• Increasing evidence demonstrates differences between the risk factor profile for intracranial 

atherosclerosis and that of extracranial atherosclerosis. 

• Increases in concentrations of 3-hydroxybutyrate, a ketone body, related to larger amounts of 

intracranial carotid artery calcification. 

• Comparison of the metabolic association pattern of intracranial carotid artery calcification 

with that of extracranial carotid artery calcification revealed differences in glycolysis-related 

metabolite measures, lipoprotein subfractions, and amino acids.  

• Glycoprotein acetyls were associated with calcification in both studied vessel beds. 

  

 


